

ASQ Edmonton Section

Dinner Meeting November 13 2014 *"Introduction to Reliability Engineering (in an Operating Environment)"*

Agenda

- Safety Moment
- Welcome
- November is World Quality Month
- What is ASQ?
- Mission Statement for our section
- Initiatives for our section
- Renewals
- Word from the ASQ Mining Interest Group
- Presentation by Andre Ferrari and Brading
 Jones

Safety

- Exit's
- Muster Point
- Washrooms

Safety Moment being covered in the presentation.

Welcome

Warm welcome to ASQ members and non-members

- Anyone attending for the first time?
- Any new ASQ members?
- Any new ASQ certified members attending?
- How many of you have viewed our section's:
 - Website <u>asqedmonton.org</u>
 - Linked-in profile Group

November is World Quality Month

November is World Quality Month, which provides a platform for acknowledging the efforts and accomplishments of quality and all who work to make it happen.

This is a time to celebrate — a time to showcase the advancements and valuable quality contributions in businesses, communities, and institutions.

Together — through our collective passion for improvement — we will raise the voice of quality worldwide. For more information, check the ASQ website http://asq.org/world-quality-month/

What is ASQ?

- ASQ provides the <u>quality community</u> with training, professional certifications, and <u>knowledge</u> to a vast network of <u>members of the global quality community</u>.
- ASQ Membership
- Networking COP
- Certifications 17
- ASQ Learning Institute
- World Conference and Events
- World Quality Month
- Knowledge Center
- Standards ISO
- Quality Press
- Research
- Social Networking
- Social Responsibility
- Quality for Life™
- Advocacy

ASQ Canada Edmonton Section adds value to ASQ membership and promotes quality in the Northern Alberta through:

- facilitating local access to information
- education on quality principles practices and experience
- and by providing opportunities to share ideas and learning.

Initiatives for our section

- Study groups for popular certifications started
- Mentorship Program
- New member welcome package
- Member Leader Training PAR Nov 15

Need our members input:

- What can your section do to provide value to you:
 - Charity participation
 - A topic that will interest you
 - A field trip to local industry

Renewals

- Keep yourself updated with the latest in Quality field by renewing your memberships
- Re-certifications do not forget to submit your recertification journals for your ASQ certifications every 3 years (you do get 6 months to submit as long as the re-certification units fall within the 3 year period

Last event jointly with AACE

• Over 40 participants

Next Event

December 4th – same venue

Your Section Annual General Meeting

- Announce new member leaders
- Opportunities to volunteer with your local section
- Your section performance
- Plan for 2015

Certification Panel discussion

- Meet the certified members
- Sharing of their experiences
- Opportunity to ask questions

Leading the Way in Quality, Reliability, and Continuous Improvement in the Global Mining Industry

Introducing.....

Andre Ferrari

Introduction
 I

ASQ – Northern Alberta Section November 13th 2014^{there}

> André Ferrari, P. Eng., CRE Brad Jones, P. Eng., CRE Enbridge Pipelines Inc.

Safety Moment

- At the time one death/\$Million Spent
- Forecast \$35 Million, 35 Deaths
- Strauss insisted on higher standards
- Hard Hats, Antiglare Goggles etc. Most Importantly Safety Net Used

The nets saved the lives of 19 men. Sadly 11 men died, 10 when a section of scaffold fell through the safety net.

Safety Improvement Takes Innovation, Courage and Desire

Presentation Contents

- Definition and Aspects of Reliability
 Engineering in an <u>Operating Environment</u>
- Reliability and Quality side by side
- Lots of Interactive Examples
- Reliability Process Flow
- A day in the life of a Reliability Engineer
- Reliability KPI's
- Reliability Engineering Tools

Definition of Reliability

The "dry" academic definition:

 Reliability (R) is the probability a system will perform its intended <u>function</u> without failure within a specified <u>mission time</u> (T) and <u>process</u> <u>conditions</u>.

R(t) = 1 – F(t) (where F = Failure Probability)

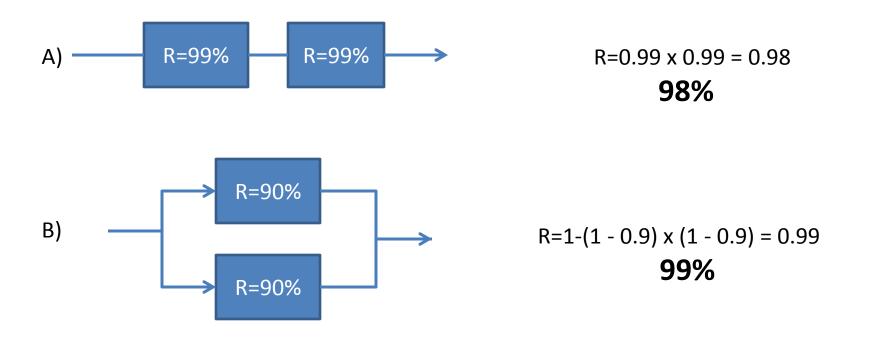
Practical Uses of Reliability Concepts

- Will we get what we expect out of the asset over its life cycle
- Is the quality of one manufacturer better than another one
- How many failures will I get after one year of operation.
- When is it most likely to fail over it's lifetime
- How do failures occur early wear out, random, old age
- What performance can I expect over the short, medium, and long term
- How much testing do I need to do before I release it to the public
- How will all those sub-systems performed collectively

Origins of Reliability Engineering

Lessons Learned and Objectives:

- Proactively / explicitly identifying and designing out failures throughout all phases of a product or process lifecycle
- Promote a "learning" organization to Improve
- Take control of the asset rather than letting the asset take control


Example 1

- Digital Camera cost 100\$ at Trust-Me Electronics – Sales man offers extended warranty at 20\$ "only".
- Subaru Impreza at Ay-got-u Cars costs 25,000\$
 Sales man reduces price by 1,000\$ and offers extended warranty at 2,000\$ only.

"What" would you do and "Why"?

Example 2

• What system arrangement should be used for improved Reliability? (A or B)? Why?

Reliability, Quality and Safety

- Reliability supports Quality and Safety
- R+S+Q = Interconnected elements influenced by Management Direction
- Safety is the overarching value
- The customer is always the focus who am I accountable to?

Quality v/s Reliability

II.	RELIABILITY MANAGEMENT	BOK
	STRATEGIC MGMT/INTERRELATIONSHIPS	I.A.2

3

Interrelationship of Safety, Quality, and Reliability (Cont'd)

Quality:	Reliability:
The totality of characteristics of a product or a service that bear on its ability to satisfy stated or implied needs (needs may be translated into specified criteria). Quality is sometimes referred to as: 1. "Fitness for use" 2. "Customer satisfaction" 3. "Conformance to requirements"	 The duration or probability of failure-free performance under stated conditions. The probability that an item can perform its intended function for a specified interval under stated conditions. (For non-redundant items this is equivalent to definition (1). For redundant items this is equivalent to definition of mission reliability).
(Gee, 2005) ²⁸	(MIL-STD-721C, 1981) ⁶⁰

Table 2.3 Comparison of Quality and Reliability Definitions

Source: Certified Reliability Engineering Body of Knowledge

Quality v/s Reliability

II. RELIABILITY MANAGEMENT STRATEGIC MGMT/INTERRELATIONSHIPS BOK I.A.2

Interrelationship of Safety, Quality, and Reliability (Cont'd)

Quality:	Reliability:
Qualitative,	Advanced
Some Quantitative,	Quantitative,
Specifications,	Element of Time ,
Attributes	Results Focused
Attributes	Results Focused

Table 2.3 Comparison of Quality and Reliability Definitions

Source: Certified Reliability Engineering Body of Knowledge

Example 3 – Fire Detection

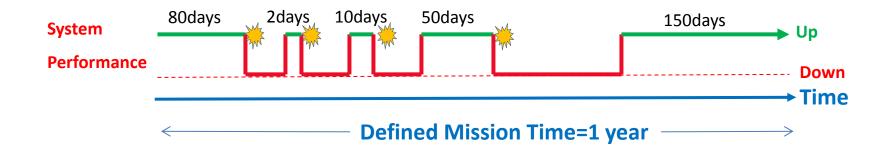
Quality View – Attributes, Specifications

- Solid state photoelectric system with both smoke & heat sensor
- Sensor sensitivity dependent on rate-of-rise of heat & smoke
- Enhanced response to fast burning fires producing little smoke
- Sensitivity shall be factory set to an alarm threshold of 8%/meter.
- Design shall minimize effects of dust and dirt on performance.

<u>Reliability View – Quantitative, Resultant Performance</u>

 The system has a 99.999% probability of operating over one year between Preventative Maintenance tasks, when properly installed and tested inside residential dwelling.

Benefits of Reliability Engineering


- Reducing Failures /Exposure to Failures Leading to Injuries or Loss of Life
- Assessing Life Cycle Patterns and Related Costs of Operation
- Minimizing Logistics Costs (e.g. Spare Parts)
- Matching the Capabilities of Product Design with Customer Application and Performance Expectations
- Optimizing the Cost to Performance Ratio Without "Over Engineering"
- Avoiding Unanticipated Products or Services Failures
- Applying Predictive and Preventive Maintenance Programs

Reliability ≠ Availability

- Reliability is the Probability of Success
- Availability is a ratio:

A = Uptime Uptime + Downtime (or total time)

Example 4

What is the Reliability of the System over 1 year?

Answer: 0% (will not survive 1 year without failure)

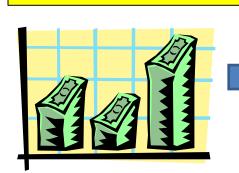
What is the Availability of the System over 1 year?

Answer: **80%** (= [80 + 2 + 10 + 50 + 150] / 365)

Enbridge Reliability Functions

New Designs	Existing Operations
Create Reliability Objectives	Collect/Analyze Performance Data
Convert Objectives to Design Requirements	Identify, Quantify and Prioritize
Analyze and Drive Design	Structured Problem Analysis
Partner with Vendors	Solutions Generation, Approval
Test and Verify Design	Solution Implementation
Test and Verify Construction	Check Solution Effectiveness
Monitor Resultant Performance	Put Control Plan In Place

Reliability Engineering Design Process


Business Requirements

Throughput , Capital Costs Operating Costs Tolls, ROI Contract Life

- Design Capabilities and Tolerances
- Design Options for Capital Decisions
- Capital Sparing Vs Maintenance
- Defined Maintenance Strategy
- Uncover hidden business risk and mitigate

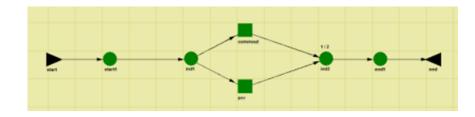
Define Reliability Requirements

Targets/Goals for Throughput , Downtime, Maintenance Costs, Capital Spares etc. Quantify Performance Over Time

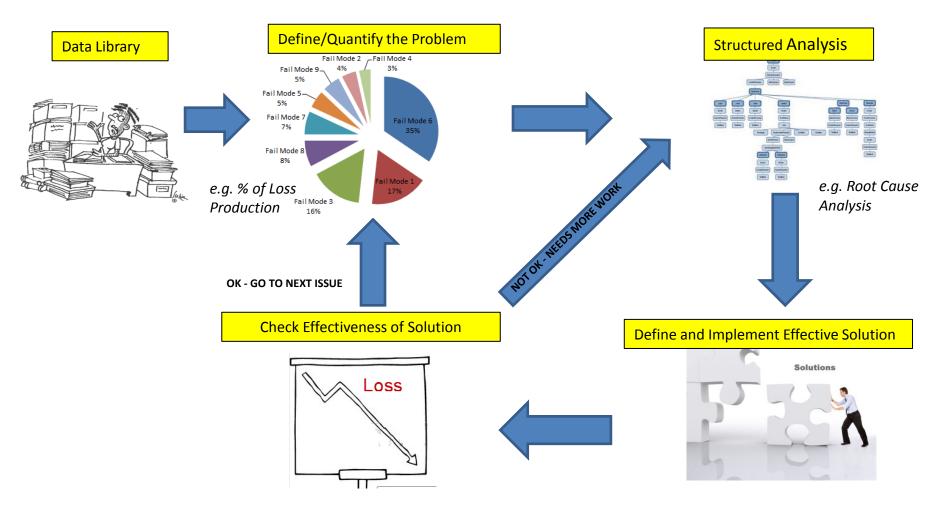
Results

Fault Tree Analysis
Failure Modes and

Select Structured Analysis


• Failure Modes and Effects Analysis

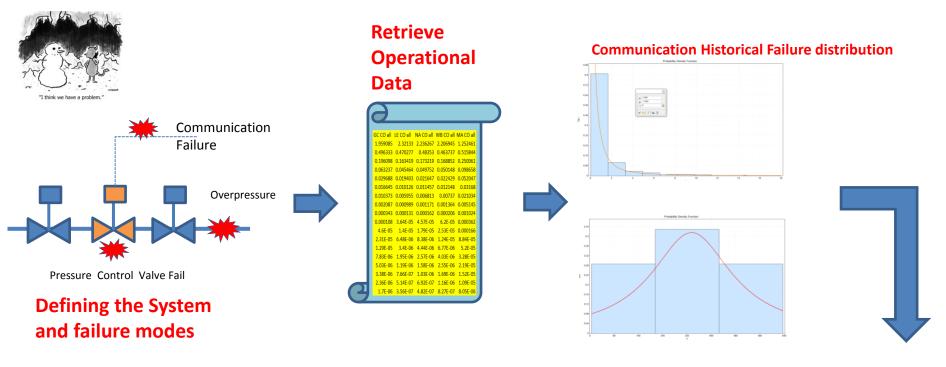
Data Library


Complete Analysis

Example : Reliability, Availability, Maintainability Model

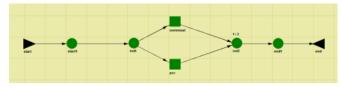
- Design In Requirements as opposed to let them happen
- Design Out Failures
- Design In Mitigation and or Redundancy
- Look at failures of Design, Operation and Maintenance

Reliability Engineering Improvement Process

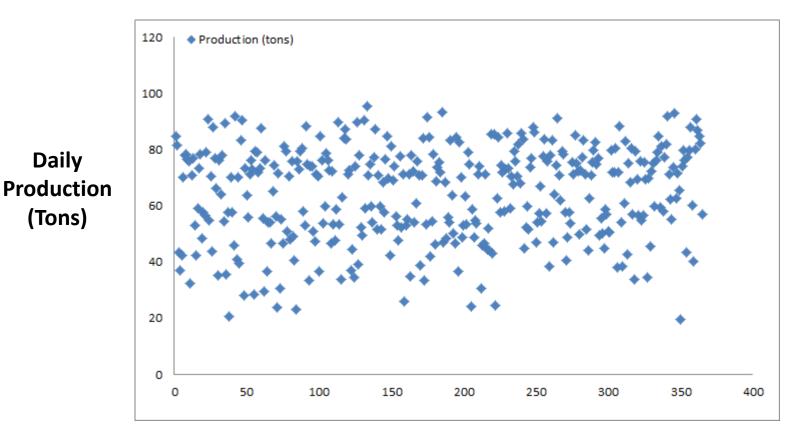

- Fundamental Driver = Structured Problem Solving
 - KPI is often Defined by or with the customer

A day in the Life of a Reliability Engineer

"I think we have a problem."

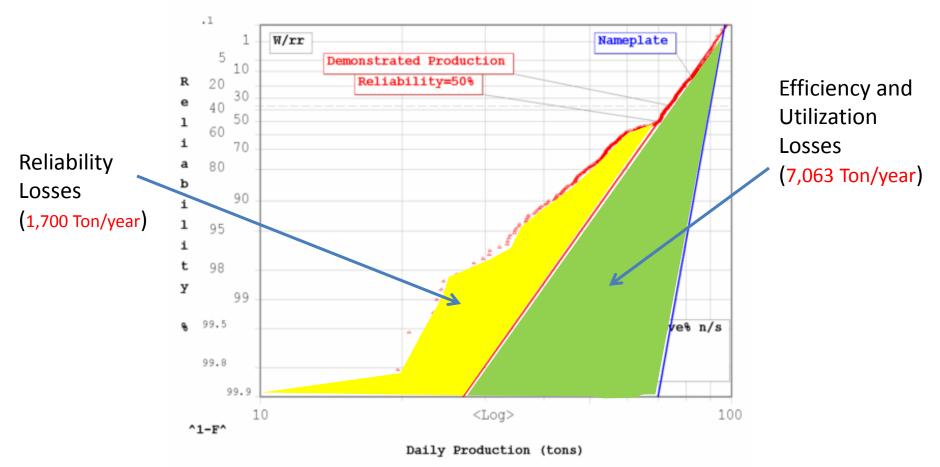

A day in the Life of a Reliability Engineer

PCV Failure distribution


- Probability of Failure Occurrence
- Expected Number of Failures
- Mean Time Between Failures
- Etc..

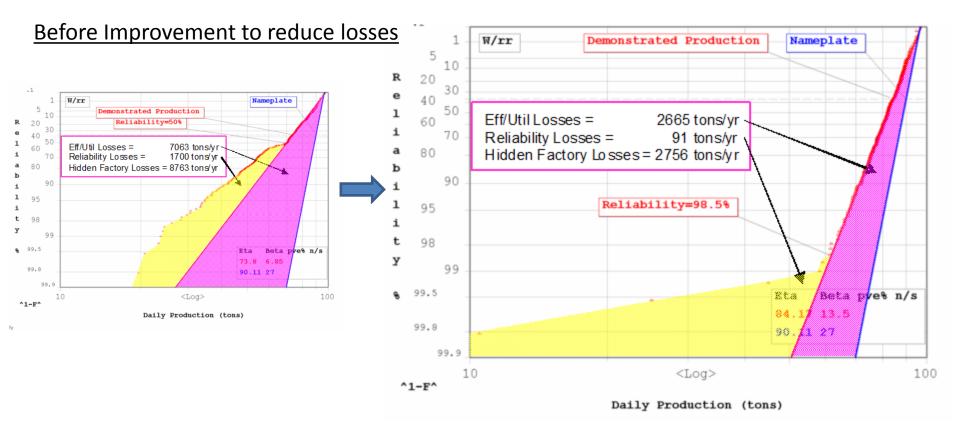
System Operating Model

Example 5 – Process Reliability



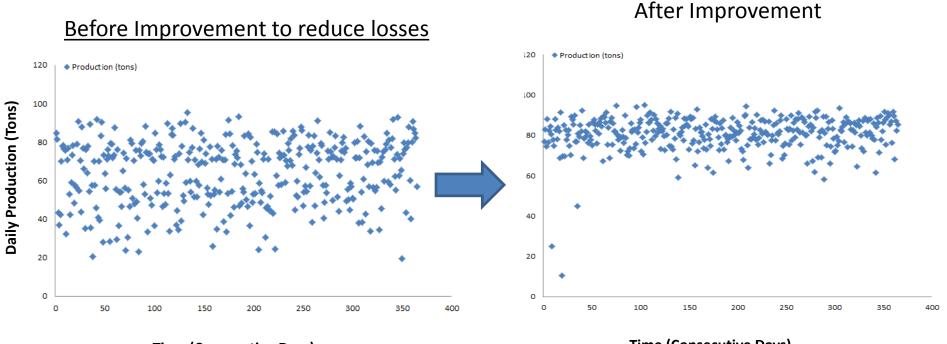
Time (Consecutive Days)

Question: What do you see in this graph?

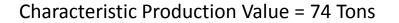

Example 5 - Continued

Process Reliability Weibull Plot

- Factory Report Card on one sheet of paper
- Concept of "Hidden Factory" (e.g. total loss of 1,700+7,063=8,763 Ton/year)

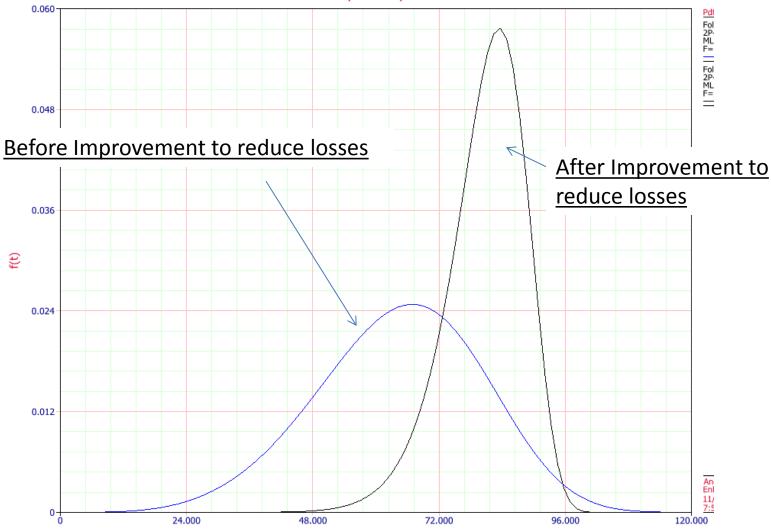

Example 5 - Continued

After Improvement to reduce losses


- Gain illustrated by reduction in Reliability and E&U losses
- Hidden Factory Gain of 6,007 Tons per year

Example 5- continued

Time (Consecutive Days)


Time (Consecutive Days)

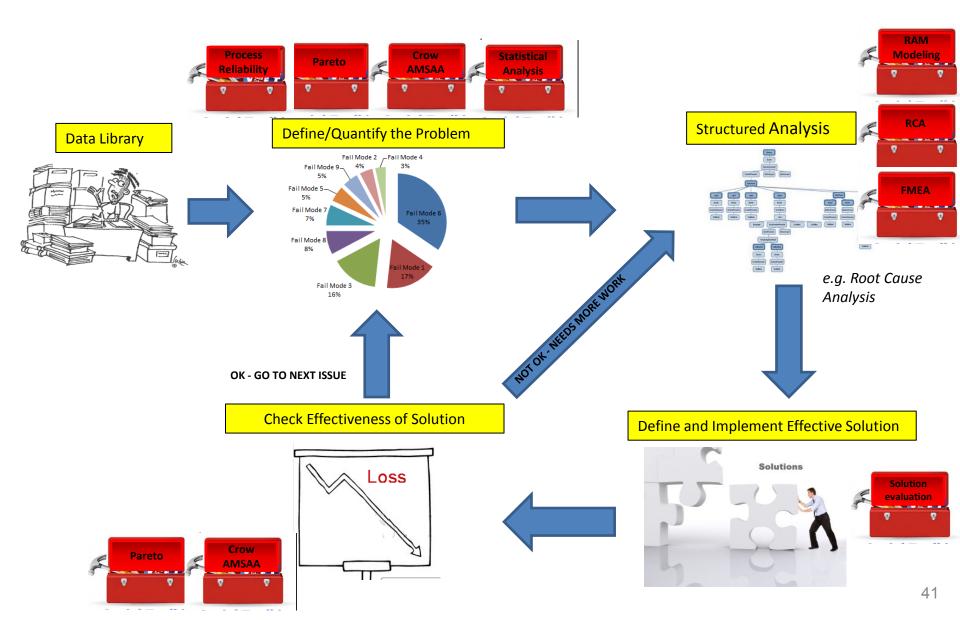
Characteristic Production Value = 84 Tons + improved consistency in output

Example 5 - continued

Probability Density Function

Frequency Distribution (tons/day)

Reliability KPIs (Examples)

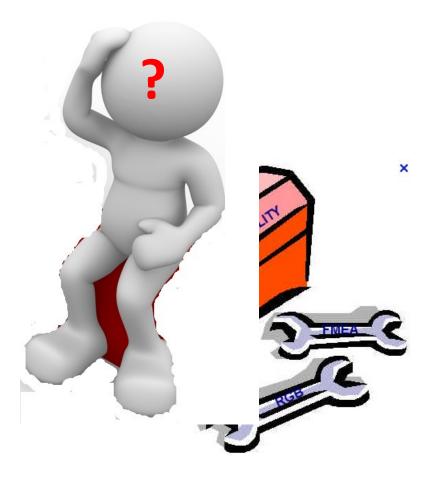

- Probability of Success or Failure (with confidence bounds)
- Probability of Achieving Output Values
- Bad Actor Paretos
- % Utilization of Asset
- Failure Rate (Improving / Stable / Deteriorating)
- Mean Failures in Defined Period
- Number of Items to be Tested
- Estimated Life Cycle
- Inherent Availability
- Process Reliability

Type of Data useful for a Reliability Analysis?

- Definition of the failure (What is the deviation from a Required Functionality? *aka Failure M*ode)
- Production Data (e.g. tons per day)
- Failure Data (What and When did it fail?)
- Maintenance Data (When was it maintained?)
- System Data (What is the system made up of?)

What is missing?

Reliability Engineering Toolkit


Reliability Resources

- ASQ Certified Reliability Engineer Program
- Conferences
 - Reliability and Maintainability conference (RAMS)
 - Applied Reliability Symposium (ARS)
- Webinars: <u>www.thinkreliability.com</u>
- General informational and tools: <u>http://reliawiki.org/index.php/Main_Page</u>
- Reliability WEB, source for lots of knowledge base information on Reliability <u>http://www.reliabilityweb.com</u>
 - Specifically 58 Tools by Paul Barringer
 http://www.reliabilityweb.com/art07/reliability_tools.htm
- ISO 55000-01 Asset Management Standard (PAS 55 <u>http://pas55.net/</u>)

The last word...

- Reliability is a journey, not achieved in one day
- Reliability (Like Quality and Safety) is everyone's business
- Data and Factual evidence a key to any good analysis
- The ultimate goal is to be in control of your asset rather than the other way round

Thank-you for your time

